
18 The Delphi Magazine Issue 28

Surviving Client/Server:
Phonetic Matching
by Steve Troxell

Many database systems con-
tain an element that keeps

track of people’s names: custom-
ers, registered owners, donators,
voters, etc. Most of the time it is a
good idea to avoiding introducing
the same individual into the data-
base more than once for related
transactions. For instance, an indi-
vidual might fill out a warranty reg-
istration card for a radio and some
months later fill out another one
for a CD player from the same com-
pany. When the second registra-
tion comes in, we would like to
recognize that the person was
already in our database and associ-
ate them with two products rather
than have two separate customer
records each associated with a
single product.

This is all fine and obvious,
except that for the situation I just
described, we have nothing but the
person’s name and address to
match with an existing record.
There is no concrete identifier
such as an employee number,
social security number, driver’s
license number, etc.

Matching on free-form data
becomes problematic when you
consider typographical errors,
letter transpositions or omissions
and spelling substitutions that
cannot be completely avoided in
manual data entry. I can’t tell you
how many variations of my name
I’ve seen come through the mail-
box over the years (see Figure 1),
yet all these distinct “name values”
refer to the same individual.

You can see how a database
gathering data from multiple
sources, or multiple independent
transactions may easily generate
duplicate records. Frequently lists
of this nature are used for mass
postal mailings and duplication of
names and addresses in the
mailing list results in wasted print-
ing costs and postage for the

redundant material, not to mention
the less than positive impression
given to the mailing recipient.
Duplicate detection and elimina-
tion is a significant selling point for
mailing houses that process lists
for outside clients.

This month, we’ll look at two
general algorithms that will help us
reduce the degree of duplication
within free-form text. These algo-
rithms were specifically intended
for name matching, but they really
apply to words in general and can
be useful in matching addresses,
cities, states, and provinces.

Soundex
Soundex is a very old and very
familiar phonetic encoding algo-
rithm, invented in 1918 and attrib-
uted to Robert C Russell and
Margaret O’Dell. Soundex was
developed far in advance of
computers to help in the manual
sorting of census records. The
algorithm ignores vowels and
groups the remaining consonants
phonetically into six groups based
on how the sounds are made: bila-
bial, labiodental, dental, alveolar,
velar and glottal.

We produce a Soundex code as
follows:
➢ Convert all letters to uppercase

and retain the first letter.

➢ Drop any occurrence of the
letters A, E, I, O, U, H, W, or Y,
except in the first letter.

➢ Convert remaining letters to
numbers as follows:
B, F, P, V 1
C, G, J, K, Q, S, X, Z 2
D, T 3
L 4
M, N 5
R 6

➢ Drop any digit that matches the
immediately previous digit.

➢ Stop once a four character code
is produced, or pad with zeroes
if necessary to produce a four
character code (a letter
followed by three digits).

Listing 1 shows a Delphi 3 imple-
mentation for Soundex. Figure 1
shows some sample names and
their corresponding Soundex
values. For this data I took a mix-
ture of names that are phonetically
similar, and a sampling of typo-
graphical and transcription errors
I’ve seen in my mail over the years.

Soundex is widely used in many
name-matching applications. In
fact, Soundex functions are built
into several RDBM systems such as
Microsoft and Sybase SQL Servers,
Oracle, and SQL Anywhere. How-
ever, some of these vendor imple-
mentations contain quirks that in
some cases result in different

➤ Figure 1

December 1997 The Delphi Magazine 19

codes being generated than the
algorithm shown here (see this
month’s Surviving SQL).

One drawback to Soundex is that
it is somewhat biased for English
language words and may not
perform as well for other lan-
guages. There are Soundex-like
alternatives for the French (Henry
Name-Matching) and Slavic/
German (Daitch-Mokotoff Coding
Method) languages.

One of Soundex’s notable short-
comings is that it is limited to pro-
ducing at most 6,708 unique codes.
Even this assumes an even distri-
bution of first letters of names
across the alphabet, so in practice
the actual number of unique codes
will be somewhat less. As the
number of varying names to
encode increases, the greater the
propensity to group truly unre-
lated names into the same code
value. Note that the sheer number
of names is not the issue; it’s the
number of different names. Even so,
with a database of one million
names, a Soundex search for
matches to any given name will
return 150 matches on average,
including duplicates.

Metaphone
A notable attempt to improve the
basic Soundex concept came in
1990 from Lawrence Philips. This
method is called Metaphone and
goes beyond single consonant

sounds to consider groups of let-
ters, or dipthongs. Metaphone
tends to isolate truly different
names a bit better than Soundex
because it applies more detailed
transformations and has a wider
range of possible code values. Like
Soundex, Metaphone is inherently
tied to English pronunciation.

Metaphone encoding is acc-
omplished as follows:
➢ Convert all letters to uppercase

and retain the first letter.
➢ Drop all vowels, except if the

first letter is a vowel.
➢ Collapse duplicating letters ex-

cept for C down to a single
letter.

➢ Convert remaining letter
groups as shown in Table 1.

Listing 2 shows my implementa-
tion of the Metaphone algorithm
and Figure 1 shows some represen-
tative values.

In general, Metaphone produces
fewer false positives than Soundex.
While the sample data shown in
Figure 1 seems to indicate other-
wise, consider that Soundex con-
cludes that Sante, Simondi and
Sindhi are phonetic matches for
Smith. Metaphone assigns unique
codes in each of these cases.
Notice also from Figure 1 how
Metaphone distinguishes the “th”
sound in Smith and Smythe from
the hard “t” sound in Smit. This
may or may not be advantageous
depending on whether you’d

consider Smit to be a misspelling of
Smith.

The standard Metaphone algo-
rithm has a theoretical upper limit
of approximately 49 million unique
codes. The degree of granularity of
the Metaphone algorithm can be
influenced by increasing or
decreasing the maximum size of
the resulting code.

Obviously, Metaphone will be
slower to execute since it’s more
detailed transformations result in
bulkier coding. Metaphone typi-
cally operates about half as fast as
a Soundex algorithm on the same
platform.

Conclusion
Both Soundex and Metaphone pro-
vide useful methods by which
words that are phonetically similar
but textually different may be
matched with some degree of accu-
racy. Obivously, there will still be
cases of true matches being
missed and false matches being
picked up, but that’s the nature of
fuzzy logic. Both of these algo-
rithms are biased towards English
language words, but there are two
language independent methods
you might care to investigate on
your own: K-Approximate Match-
ing and Guth Name-Matching.

Next month we’ll look at a tech-
nique for indexing words within
free-form text for building keyword
lists for document retrieval
systems.

Steve Troxell is a software
engineer with Ultimate Software
Group in the USA. He can be
contacted via email at
Steve_Troxell@USGroup.com

References
Practical Algorithms For Programmers,

Andrew Binstock and John Rex, 1995,

Addison-Wesley Publishing, ISBN 0-201-

63208-X, pp157-169.

SQL For Smarties: Advanced SQL Program-

ming, Joe Celko, 1995, Morgan Kaufman

Publishers, ISBN 1-55860-323-9, pp83-90.

An Assessment of Name Matching Algo-

rithms, A J Lait and B Randall, University of

Newcastle upon Tyne, UK.

function Soundex(aKey: string): string;
const {ABCDEFGHIJKLMNOPQRSTUVWXYZ}
LetterCodes = '01230120022455012623010202';
MaxCodeLength = 4;

var
I: Integer;
Ch: Char;
LastCh: Char;

begin
Result := '';
LastCh := #0;
I := 1;
while Length(Result) <> MaxCodeLength do begin
if I > Length(aKey) then
Result := Result + '0'

else begin
Ch := UpCase(aKey[I]);
if Ch in ['A'..'Z'] then
if Length(Result) = 0 then
Result := Ch

else begin
Ch := LetterCodes[Ord(Ch) - 64];
if (Ch <> '0') and (Ch <> LastCh) then begin
Result := Result + Ch;
LastCh := Ch;

end;
end;
Inc(I);

end;
end;

end;

➤ Listing 1

20 The Delphi Magazine Issue 28

function Metaphone(aKey: string): string;
const
MaxCodeLength = 6;
VowelSet = ['A', 'E', 'I', 'O', 'U'];
NonTransformSet = ['F', 'J', 'L', 'M', 'N', 'R'];
EIYSet = ['E', 'I', 'Y'];

var
Ch: Char;
I: Integer;
KeyBuffer: array[0..256] of Char;
KeyBufLen: Integer; { Number of chars in buffer }
Key: PChar; { Pointer to start of string }
LastCharPos: Integer; { Position of last char in buffer }

begin
Result := '';
{ Retain uppercase alpha characters in buffer; buffer will
always have at least one #0 placeholder before and after
keyword. This avoids need to check length bounds when
comparing previous or next letters. }

FillChar(KeyBuffer, SizeOf(KeyBuffer), #0);
Key := @KeyBuffer[1];
KeyBufLen := 0;
for I := 1 to Length(aKey) do begin
Ch := UpCase(aKey[I]);
if Ch in ['A'..'Z'] then begin
Key[KeyBufLen] := Ch;
Inc(KeyBufLen);

end;
end;
LastCharPos := KeyBufLen - 1;
{ Transform prefixes }
if CompareMem(Key, PChar('GN'), 2) or
CompareMem(Key, PChar('KN'), 2) or
CompareMem(Key, PChar('PN'), 2) or
CompareMem(Key, PChar('AE'), 2) or
CompareMem(Key, PChar('WH'), 2) or
CompareMem(Key, PChar('WR'), 2) then
Inc(Key)

else if Key[0] = 'X' then
Key[0] := 'S';

for I := 0 to LastCharPos do begin
{ Skip duplicating letters except for C }
if (Key[I - 1] = Key[I]) and (Key[I] <> 'C') then
Continue;

{ Retain nontransform letters }
if (Key[I] in NonTransformSet) or
((I = 0) and (Key[I] in VowelSet)) then begin
Result := Result + Key[I];
Continue;

end;
{ Apply transforms }
case Key[I] of
'B': { retain unless within -MB }

if not ((I = LastCharPos) and
(Key[I - 1] = 'M')) then
Result := Result + 'B';

'C': { drop if in -SCI-, -SCE- or -SCY- }
if not ((Key[I - 1] = 'S') and
(Key[I + 1] in EIYSet)) then
{ map to X if in -CIA- or -CH-}
if ((Key[I + 1] = 'I') and
(Key[I+2] = 'A')) or (Key[I+1] = 'H') then
Result := Result + 'X'

else
{ map to S if in -CE-, -CI- or -CY- }
if Key[I + 1] in EIYSet then
Result := Result + 'S'

else { otherwise K }
Result := Result + 'K';

'D': { map to J if in -DGE-, -DGI- or -DGY- }

if (Key[I + 1] = 'G') and
(Key[I + 2] in EIYSet) then
Result := Result + 'J'

else { otherwise T }
Result := Result + 'T';

'G': { map to J if in -GE-, -GI, -GY and not GG }
if (Key[I + 1] in EIYSet) and
(Key[I - 1] <> 'G') then Result := Result + 'J'

else
{ drop if in -GH- but not at end or before a vowel }
if not ((Key[I + 1] = 'H') and
(I <> LastCharPos - 1) and
not (Key[I + 2] in VowelSet)) or
{ drop if in -GNED }
((I = LastCharPos - 3) and
CompareMem(@Key[I + 1], PChar('NED'), 3)) or
{ drop if in -GN }
((I = LastCHarPos - 1) and
(Key[I + 1] = 'N')) or
{ drop if in -DGE-, -DGI- or -DGY- }
((Key[I - 1] = 'D') and
(Key[I + 1] in EIYSet)) then
{ otherwise K }
Result := Result + 'K';

'H': { retain if before a vowel and not after C, G, P, S or T }
if (Key[I + 1] in VowelSet) and
not (Key[I-1] in ['C','G','P','S','T']) then
Result := Result + 'H';

'K': { retain unless after C }
if Key[I - 1] <> 'C' then
Result := Result + 'K';

'P': { map to F if before H }
if Key[I + 1] = 'H' then
Result := Result + 'F'

else { otherwise P }
Result := Result + 'P';

'Q': { map to K }
Result := Result + 'K';

'S': { map to X if in -SH-, -SIO- or -SIA- }
if (Key[I + 1] = 'H') or

((Key[I + 1] = 'I') and
(Key[I + 2] in ['O', 'A'])) then
Result := Result + 'X'

else { otherwise S }
Result := Result + 'S';

'T': { map to X if in -TIA- or -TIO- }
if (Key[I + 1] = 'I') and
(Key[I + 2] in ['O', 'A']) then
Result := Result + 'X'

else
{ map to 0 (zero) if before H }
if Key[I + 1] = 'H' then
Result := Result + '0'

else
{ drop if in -TCH- }
if not ((Key[I + 1] = 'C') and
(Key[I + 2] = 'H')) then
{ otherwise T }
Result := Result + 'T';

'V': Result := Result + 'F'; { map to F }
W','Y': { retain if after a vowel }

if Key[I - 1] in VowelSet then
Result := Result + Key[I];

'X': Result := Result + 'KS'; { map to KS }
'Z': Result := Result + 'S'; { map to S }

end;
{ terminate if max code length is reached }
if Length(Result) = MaxCodeLength then Break;

end;
end;

➤ Listing 2

F, J, L, M, N, R Do not change

GN-, KN-, PN- N

AE- E

WH- H

WR- R

X- S

B Dropped if in -MB, otherwise B

C X if in -CIA- or -CH-, S if in -CI-, -CE- or -CY-,
dropped if in -SCI-, SCE- or -SCY-, otherwise K

D J if in -DGE-, -DGI- or -DGY-, otherwise T

G Dropped if in -GH-, and not at end or before a
vowel, dropped if in -GNED, -GN, -DGE-, -DGI-
or -DGY-, J if in -GE-, -GI, -GY and not GG,
otherwise K

H H if before a vowel and not after C, G, P, S, T

K Dropped if after C,otherwise K

P F if before H, otherwise P

Q K

S X in -SIO- or -SIA-, otherwise S

T X in -TIA- or -TIO-, O if before H,
drop if in -TCH-, otherwise T

V F

W W if after a vowel, otherwise dropped

X KS

Y Y if after a vowel, otherwise dropped

Z S

➤ Table 1: Metaphone letter group conversion

December 1997 The Delphi Magazine 21

In the September and October issues, we developed a
customize TDataSetdescendant component to allow us
to access a proprietary database format. I was fortu-
nate enough to have Borland’s Mark Edington, the engi-
neer responsible for the TDataSet abstraction in Delphi
3, take a look at those articles. Mark pointed out a
couple of flaws in my implementation.

First, the CompareBookmarks method should return -1
if Bookmark1 refers to a location before Bookmark2 in
the table (contrary to what the online help says). This

function TMyDataSet.CompareBookmarks(
Bookmark1, Bookmark2: TBookmark): Integer;

const
RetCodes: array[Boolean, Boolean]
of Integer = ((2, -1), (1, 0));

begin
Result := RetCodes[Bookmark1 = nil, Bookmark2 = nil];
if Result = 2 then begin
if TBookmarkInfo(Bookmark1^) =
TBookmarkInfo(Bookmark2^) then
Result := 0

else if TBookmarkInfo(Bookmark1^) >
TBookmarkInfo(Bookmark2^) then
Result := 1

else
Result := -1;

end;
end;

➤ Listing 3

gmPrior:
begin
AtEof := Eof;
repeat
FilePosition := FilePos(FInternalFile);
if FilePosition < (2 * FRecSize) then
Result := grBOF

else begin
if AtEof then
Seek(FInternalFile,
FileSize(FInternalFile) - FRecSize)

else
Seek(FInternalFile,
FilePosition - (2 * FRecSize));

BlockRead(FInternalFile, Buffer^, FRecSize);
AtEof := False;

end;
until (Result <> grOk) or (Byte(Buffer^) = 0);

end;

➤ Listing 4

behavior is needed by TDBGrid when multiselect is
enabled. Listing 3 shows Mark’s corrected method.

Second, in the GetRecord method, a problem exists
when the last physical record of the file has been
deleted. In my original code, an infinite loop would
occur as the dataset tried to call for the prior record
from the end of the file. Listing 4 shows the corrected
code for the gmPriorcase within the GetRecordmethod.

TDataSet Update

	Soundex
	Metaphone
	Conclusion

